Что называется электромагнитной волной в физике. Конспект урока "Электромагнитная волна

), описывающей электромагнитное поле, теоретически показал, что электромагнитное поле в вакууме может существовать и в отсутствие источников - зарядов и токов. Поле без источников имеет вид волн, распространяющихся с конечной скоростью, которая в вакууме равна скорости света: с = 299792458±1, 2 м/с. Совпадение скорости распространения электромагнитных волн в вакууме с измеренной ранее скоростью света позволило Максвеллу сделать вывод о том, что свет представляет собой электромагнитные волны. Подобное заключение в дальнейшем легло в основу электромагнитной теории света.

В 1888 году теория электромагнитных волн получила экспериментальное подтверждение в опытах Г. Герца . Используя источник высокого напряжения и вибраторы (см. Герца вибратор), Герцу удалось выполнить тонкие эксперименты по определению скорости распространения электромагнитной волны и ее длины. Экспериментально подтвердилось, что скорость распространения электромагнитной волны равна скорости света, что доказывало электромагнитную природу света.

Дж. Максвелл в 1864 г. создал теорию электромагнитного поля, согласно которой электрическое и магнитное поля существуют как взаимосвязанные составляющие единого целого — электромагнитного поля. В пространстве, где существует переменное магнитное поле, возбуждается переменное электрическое поле, и наоборот.

Электромагнитное поле – один из видов материи, характеризуемый наличием электрического и магнитного полей, связанных непрерывным взаимным превращением.

Электромагнитное поле распространяется в пространстве в виде электромагнитных волн. Колебания вектора напряженности E и вектора магнитной индукции B происходят во взаимно перпендикулярных плоскостях и перпендикулярно направлению распространения волны (вектору скорости).

Эти волны излучаются колеблющимися заряженными частицами, которые при этом движутся в проводнике с ускорением. При движении заряда в проводнике создается переменное электрическое поле, которое порождает переменное магнитное поле, а последнее, в свою очередь, вызывает появление переменного электрического поля уже на большем расстоянии от заряда и так далее.

Электромагнитное поле, распространяющееся в пространстве с течением времени, называется электромагнитной волной .

Электромагнитные волны могут распространяться в вакууме или любом другом веществе. Электромагнитные волны в вакууме распространяются со скоростью света c=3·10 8 м/с . В веществе скорость электромагнитной волны меньше, чем в вакууме. Электромагнитная волна переносит энергию.

Электромагнитная волна обладает следующими основными свойствами: распространяется прямолинейно, она способна преломляться, отражаться, ей присущи явления дифракции, интерференции, поляризации. Всеми этими свойствами обладают световые волны , занимающие в шкале электромагнитных излучений соответствующий диапазон длин волн.

Мы знаем, что длина электромагнитных волн бывает самой различной. Посмотрев на шкалу электромагнитных волн с указанием длин волн и частот различных излучений, мы различим 7 диапазонов: низкочастотные излучения, радиоизлучение, инфракрасные лучи, видимый свет, ультрафиолетовые лучи, рентгеновские лучи и гамма-излучение.


  • Низкочастотные волны . Источники излучения: токи высокой частоты, генератор переменного тока, электрические машины. Применяются для плавки и закалки металлов, изготовление постоянных магнитов, в электротехнической промышленности.
  • Радиоволны возникают в антеннах радио- и телевизионных станций, мобильных телефонах, радарах и т. д. Применяются в радиосвязи, телевидении, радиолокации.
  • Инфракрасные волны излучают все нагретые тела. Применение: плавка, резка, сварка тугоплавких металлов с помощью лазеров, фотографирование в тумане и темноте, сушка древесины, фруктов и ягод, приборы ночного видения.
  • Видимое излучение. Источники — Солнце, электрическая и люминесцентная лампа, электрическая дуга,лазер. Применяется: освещение, фотоэффект, голография.
  • Ультрафиолетовые излучение . Источники: Солнце, космос, газоразрядная (кварцевая) лампа, лазер. Оно способно убивать болезнетворные бактерии. Применяется для закаливания живых организмов.
  • Рентгеновское излучение .
Электромагнитной волной называют возмущение электромагнитного поля, которое передается в пространстве. Ее скорость совпадает со скоростью света

2. Опишите опыт Герца по обнаружению электромагнитных волн

В опыте Герца источником электромагнитного возмущения были электромагнитные колебания, которые возникали в вибраторе (проводник с воздушным промежутком посередине). К этому промежутку подавалось высокое напряжение, оно вызывало искровой разряд. Через мгновение искровой разряд возникал в резонаторе (аналогичный вибратор). Самая интенсивная искра возникала в резонаторе, который был расположен параллельно вибратору.

3. Объясните результаты опыта Герца с помощью теории Максвелла. Почему электромагнитная волна является поперечной?

Ток через разрядный промежуток создает вокруг себя индукцию, магнитный поток возрастает, возникает индукционный ток смещения. Напряженность в точке 1 (рис. 155, б учебника) направлена против часовой стрелки в плоскости чертежа, в точке 2 ток направлен вверх и вызывает индукцию в точке 3, напряженность направлена вверх. Если величина напряженности достаточна для электрического пробоя воздуха в промежутке, то возникает искра и в резонаторе протекает ток.

Потому что направления векторов индукции магнитного поля и напряженности электрического поля перпендикулярны друг другу и направлению волны.

4. Почему излучение электромагнитных волн возникает при ускоренном движении электрических зарядов? Как напряженность электрического поля в излучаемой электромагнитной волне зависит от ускорения излучающей заряженной частицы?

Сила тока пропорциональна скорости движения заряженных частиц, поэтому электромагнитная волна возникает только если скорость движения этих частиц зависит от времени. Напряженность в излучаемой электромагнитной волне прямо пропорциональна ускорению излучающей заряженной частицы.

5. Как зависит плотность энергии электромагнитного поля от напряженности электрического поля?

Плотность энергии электромагнитного поля прямо пропорциональна квадрату напряженности электрического поля.

Технический прогресс имеет и обратную сторону. Глобальное использование различной техники, работающей от электричества, стало причиной загрязнения, которому дали название – электромагнитный шум. В этой статье мы рассмотрим природу этого явления, степень его воздействия на организм человека и меры защиты.

Что это такое и источники излучения

Электромагнитное излучение – это электромагнитные волны, которые возникают при возмущении магнитного или электрического поля. Современная физика трактует этот процесс в рамках теории корпускулярно-волнового дуализма. То есть, минимальной порцией электромагнитного излучения является квант, но в тоже время оно имеет частотно-волновые свойства, определяющие его основные характеристики.

Спектр частот излучения электромагнитного поля, позволяет классифицировать его на следующие виды:

  • радиочастотное (к ним относятся радиоволны);
  • тепловое (инфракрасное);
  • оптическое (то есть, видимое глазом);
  • излучение в ультрафиолетовом спектре и жесткое (ионизированное).

Детальную иллюстрацию спектрального диапазона (шкала электромагнитных излучений), можно увидеть на представленном ниже рисунке.

Природа источников излучения

В зависимости от происхождения, источники излучения электромагнитных волн в мировой практике принято классифицировать на два вида, а именно:

  • возмущения электромагнитного поля искусственного происхождения;
  • излучение, исходящее от естественных источников.

Излучения, исходящие от магнитного поля поле вокруг Земли, электрических процессов в атмосфере нашей планеты, ядерного синтеза в недрах солнца – все они естественного происхождения.

Что касается искусственных источников, то они побочное явление, вызванное работой различных электрических механизмов и приборов.

Исходящее от них излучение, может быть низкоуровневым и высокоуровневым. От уровней мощности источников полностью зависит степень напряженности излучения электромагнитного поля.

В качестве примера источников с высоким уровнем ЭМИ можно привести:

  • ЛЭП, как правило, высоковольтные;
  • все виды электротранспорта, а также сопутствующая ему инфраструктура;
  • теле- и радиовышки, а также станции передвижной и мобильной связи;
  • установки для преобразования напряжения электрической сети (в частности, волны исходящие от трансформатора или распределяющей подстанции);
  • лифты и другие виды подъемного оборудования, где используется электромеханическая силовая установка.

К типичным источникам, излучающим низкоуровневые излучения можно отнести следующее электрооборудование:

  • практически все устройства с ЭЛТ дисплеем (например: платежный терминал или компьютер);
  • различные типы бытовой техники, начиная от утюгов и заканчивая климатическими системами;
  • инженерные системы, обеспечивающие подачу электричества к различным объектам (подразумеваются не только кабель электропередач, а сопутствующее оборудование, например розетки и электросчетчики).

Отдельно стоит выделить специальное оборудование, используемое в медицине, которое испускает жесткое излучение (рентгеновские аппараты, МРТ и т.д.).

Влияние на человека

В ходе многочисленных исследований радиобиологи пришли к неутешительному выводу – длительное излучение электромагнитных волн может стать причиной «взрыва» болезней, то есть оно вызывает бурное развитие паталогических процессов в организме человека. Причем многие из них вносят нарушения на генетическом уровне.

Видео: Как влияет электромагнитное излучение на людей.
https://www.youtube.com/watch?v=FYWgXyHW93Q

Это происходит из-за того, что у электромагнитного поля высокий уровень биологической активности, что негативно отражается живых организмах. Фактор влияния зависит от следующих составляющих:

  • характер производимого излучения;
  • как долго и с какой интенсивностью оно продолжается.

Влияние на здоровье человека излучения, у которого электромагнитная природа, напрямую зависит от локализации. Она может быть как местного, так и общего характера. В последнем случае происходит масштабное облучение, например излучение, производимое ЛЭП.

Соответственно, под местным облучением подразумевается воздействие на определенные участки тела. Исходящие от электронных часов или мобильного телефона электромагнитные волны, яркий пример локального воздействия.

Отдельно необходимо отметить термальное воздействие высокочастотного электромагнитного излучения на живую материю. Энергия поля преобразуется в тепловую энергию (за счет вибрации молекул), на этом эффекте основа работа промышленных СВЧ излучателей, используемых для нагрева различных веществ. В отличие от пользы в производственных процессах, термальное воздействие на организм человека может оказаться пагубным. С точки зрения радиобиологии находиться возле «теплого» электрооборудования не рекомендуется.

Необходимо принять во внимание, что в быту мы регулярно подвергаемся облучению, причем это происходит не только на производстве, а и дома или при перемещении по городу. Со временем биологический эффект накапливается и усиливается. С ростом электромагнитного зашумления возрастает количество характерных заболеваний мозга или нервной системы. Заметим, что радиобиология довольно молодая наука, поэтому вред наносимый живым организмам от электромагнитного излучения досконально не изучен.

На рисунке виден, уровень электромагнитных волн, производимых обычными, используемыми в быту приборами.


Обратите внимание, что уровень напряженности поля существенно снижается на расстоянии. То есть, чтобы уменьшит его действие, достаточно отдалиться от источника на определенное расстояние.

Формула для расчета нормы (нормирование) излучения электромагнитного поля указана в соответствующих ГОСТах и СанПиНах.

Защита от излучения

На производстве в качестве средств, защищающих от облучения, активно применяются поглощающие (защитные) экраны. К сожалению, защититься от излучения электромагнитного поля при помощи такого оборудования в домашних условиях не представляется возможным, поскольку оно на это не рассчитано.

  • чтобы свести воздействие излучения электромагнитного поля практически к нулю, следует отойти от ЛЭП, радио- и телевышек на расстояние не менее 25 метров (необходимо учитывать мощность источника);
  • для ЭЛТ монитора и телевизора это расстояние значительно меньше – около 30 см;
  • электронные часы не следует ставить близко подушке, оптимальное расстояние для них более 5 см;
  • что касается для радио и сотовых телефонов, подносить их ближе, чем на 2,5 сантиметра не рекомендуется.

Заметим, что многие знают, как опасно стоять рядом с высоковольтными линиями электропередач, но при этом большинство людей не придают значения, обычным бытовым электроприборам. Хотя достаточно поставить системный блок на пол или переместить подальше, и вы обезопасите себя и своих близких. Советуем проделать это, после чего замерять фон от компьютера используя детектор излучения электромагнитного поля, чтобы наглядно убедиться в его снижении.

Этот совет также касается и размещения холодильника, многие ставят его неподалеку от кухонного стола, практично, но небезопасно.

Никакая таблица не сможет указать точное безопасное расстояние от конкретного электрооборудования, поскольку излучения может варьироваться, как в зависимости от модели устройства, так и страны производителя. В настоящий момент нет единого международного стандарта, поэтому в разных странах нормы могут иметь существенные расхождения.

Точно определить интенсивность излучения можно при помощи специального прибора – флюксметра. Согласно принятым в России нормам, максимально допустимая доза не должна превышать 0,2мкТл. Рекомендуем произвести замер в квартире, используя указанный выше прибор для измерения степени излучения электромагнитного поля.

Флюксметр – прибор для измерения степени излучения электромагнитного поля

Старайтесь сократить время, когда вы подвергаетесь облучению, то есть, не находитесь долго рядом с работающими электротехническими приборами. Например, совсем не обязательно постоянно стоять у электроплиты или СВЧ-печки во время приготовления пищи. Касательно электрооборудования можно заметить, что теплое, не всегда означает безопасное.

Всегда выключайте неиспользуемые электроприборы. Люди зачастую оставляют включенными различные устройства, не учитывая, что в это время от электротехники исходит электромагнитное излучение. Выключите ноутбук, принтер или другое оборудование, ненужно лишний раз подвергаться облучению, помните про свою безопасность.