Что такое биосинтез в биологии? Характеристика основных методов получения антибиотиков Почему человек не может скопировать реакции биосинтеза.

ДНК – носитель всей генетической информации в клетке – непосредственного участия в синтезе белка (реализации этой наследственной информации) не принимают. В клетках животных и растений молекулы ДНК отделены ядерной мембраной от цитоплазмы, где происходит синтез белков. К рибосомам - местам сборки белков - высылается из ядра посредник, который несет скопированную информацию и способен пройти через поры ядерной мембраны. Таким посредником является информационная РНК, которая участвует в матричных реакциях.

Матричные реакции - это реакции синтеза новых соединений на основе «старых» макромолекул, выполняющих роль матрицы, т. е. формы, образца для копирования новых молекул. Матричными реакциями реализации наследственной информации, в которых принимают участие ДНК и РНК являются:

1. Репликация ДНК – удвоение молекул ДНК, благодаря которым передача генетической информации осуществляется от поколения к поколению. Матрицей является материнская ДНК.

2. Транскрипция (лат. transcription – переписывание) – это синтез молекул РНК по принципу комплементарности на матрице одной из цепей ДНК. Происходит в ядре под действием фермента ДНК-зависимой РНК-полимеразы. Информационная РНК – это одноцепочная молекула, и копирование гена идет с одной нити двуцепочной молекулы ДНК. Язык триплетов ДНК переводится на язык кодонов и-РНК. В результате транскрипции разных генов синтезируются все виды РНК. Затем и-РНК, т-РНК, р-РНК через поры в ядерной оболочке выходят в цитоплазму клетки для выполнения своих функций.

3. Трансляция (лат. translatio – передача, перевод) – это синтез полипетдиных цепей белков на матрице зрелой и-РНК, осуществляемый рибосомами. В этом процессе выделяют несколько этапов:

Этап первый – инициация (начало синтеза). В цитоплазме на один из концов и-РНК (именно на тот, с которого начинался синтез молекулы в ядре) вступает рибосома и начинает синтез полипептида. Молекула т-РНК, транспортирующая аминокислоту глутамин (т-РНК ГЛН), соединяется с рибосомой и прикрепляется к началу цепи и-РНК (кодом УАГ). Рядом с первой т-РНК (не имеющей никакого отношения к синтезирующему белку) присоединяется вторая т-РНК с аминокислотой. Если антикодон т-РНК, то между аминокислотами возникает пептидная связь, которую образует определенный фермент. После этого т-РНК покидает рибосому (уходит в цитоплазму за новой аминокислотой), а и-РНК перемещается на один кодон.

Второй этап – элонгация (удлинения цепи). Рибосома перемещается по молекуле и-РНК не плавно, а прерывисто, триплет за триплетом. Третья т-РНК с аминокислотой связывается своим антикодоном с кодоном и-РНК. При установлении комплиментарности связи рибосома делает еще шаг на один «кодон», а специфический фермент «сшивает» пептидной связью вторую и третью аминокислоту - образуется пептидная цепь. Аминокислоты в растущей полипептидной цепи соединяются в той последовательности, в которой расположены шифрующие их кодоны и-РНК (рис. 14).

Третий этап – терминация (окончание синтеза) цепи. Происходит при трансляции рибосомой одного из трех «нонсенс-кодонов» (УАА, УАГ, УГА). Рибосомы соскакивают с и-РНК, синтез белка завершен.

Таким образом, зная порядок расположения аминокислот в молекуле белка, можно определить порядок нуклеотидов (триплетов) в цепи и-РНК, а по ней – порядок пар нуклеотидов в участке ДНК и наоборот, учитывая принцип комплиментарности нуклеотидов.

Но в процессе матричных реакций могут происходить изменения – мутации. Это генные мутации на молекулярном уровне - результат различных повреждений в молекулах ДНК – затрагивают один или несколько нуклеотидов. Все формы генных мутаций можно разделить на две большие группы.

Первая группа - сдвиг рамки считывания – представляет собой вставки или выпадения одной или нескольких дар нуклеотидов. В зависимости от места нарушения изменяется то или иное количество кодонов. Это наиболее тяжелые повреждения генов, так как в белок будут включены совершенно другие аминокислоты. На такие делеции и вставки приходится 80% всех спонтанных генных мутаций.

Наибольшим повреждающим действием обладают нонсенс – мутации, которые связаны с появлением кодонов-терминаторов, вызывающих остановку синтеза белка. Это может привести к преждевременному окончанию синтеза белка, который быстро деградирует. Результат – гибель клетки или изменение характера индивидуального развития.

Мутации, связанные с заменой, выпадением или вставкой в кодирующей части гена фенотипически проявляются в виде замены аминокислот в белке. В зависимости от природы аминокислот и функциональной значимости нарушенного участка, наблюдается полная или частичная потеря функциональной активности белка. Это выражается в снижении жизнеспособности, изменении признаков организмов и т.д.

Вторая группа – это генные мутации с заменой пар оснований нуклеотидов. Существуют два типа замены оснований:

1. Транзиция – замена одного пуринового на другое пуриновое основание (А на Г или Г на А) или одного пиримидинового на другое пиримидиновое (Ц на Т или Т на Ц).

2. Трансверсия– замена одного пуринового основания на пиримидиновое или наоборот (А на Ц, или Г на Т, или А на У). Примером трансверсии является серповидно-клеточная анемия, возникающая из-за наследственного нарушения структуры гемоглобина. У мутантного гена, кодирующего одну из цепей гемоглобина, нарушен всего один нуклеотид, и в и-РНК происходит замена аденина на урацил (ГААна ГУА). В результате происходит изменение биохимического фенотипа, в β-цепи гемоглобина глутаминовая кислота заменена на валин. Эта замена изменяет поверхность гемоглобиновой молекулы: вместо двояковогнутого диска клетки эритроцитов становятся похожи на серпы и либо закупоривают мелкие сосуды, либо быстро удаляются из кровообращения, что быстро приводит к анемии.

Таким образом, значимость генных мутаций для жизнедеятельности организма неодинакова:

· некоторые «молчащие мутации» не оказывают влияния на структуру и функцию белка (например, замена нуклеотида, не приводящая к замене аминокислот);

· некоторые мутации ведут к полной потере функции белка и гибели клеток (например, нонсенс-мутации);

· другие мутации - при качественном изменении и-РНК и аминокислот ведут к изменению признаков организма;

· некоторые мутации, изменяющие свойства белковых молекул, оказывают повреждающее действие на жизнедеятельность клеток – такие мутации обусловливают тяжелое течение болезней (например, трансверсии).

Конец работы -

Эта тема принадлежит разделу:

Введение. Молекулярные основы наследственности

Введение.. генетика от греч genesis происхождение как наука о закономерностях.. i этап гг период классической генетики развитие менделизма..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Основные виды наследственности
Генетика– наука, изучающая закономерности наследственности и изменчивости живых организмов. Наследственность– это способность организмов повторять в покол

Основные носители наследственности
Основными носителями ядерной наследственности являются хромосомы,расположенные в ядре клетки. У каждой хромосомы имеются химические компоненты: одна гигантская молекула ДНК

Понятие о кариотипе человека
Число, размеры и форма хромосом являются специфическими признаками для каждого вида живых организмов. Так, в клетках рака-отшельника содержится по 254 хромосомы, а у комара – только 6. Соматические

Правила хромосом
Существует 4 правила хромосом: Правило постоянства числа хромосом.Соматические клетки организма каждого вида в норме имеют строго определенное число хромосом (напри

Клеточный и митотический циклы
Клеточный (жизненный) цикл– это период в жизнедеятельности клетки от момента ее появления до гибели или образования дочерних клеток.Митотический цикл - это период в жизнедеятельности

Размножение на организменном уровне
Гаметогенез – это процесс образования гамет - мужских и женских половых клеток. Яйцеклетки образуются в женских гонадах (яичниках) и имеют крупные размеры

Особенности репродукции человека
Особенности репродукции человека обусловлены его спецификой как биологического и социального существа. Способность к репродукции становится возможной с наступлением половой зрелости, призн

Нуклеиновые кислоты
В 1869 г. швейцарский биохимик Иоганн Фридрих Мишер впервые обнаружил, выделил из ядер клеток и описал ДНК. Но только в 1944 г. О. Эйвери, С. Маклеодом и М. Макарти бала доказана генетическая роль

Генетический код и его свойства
Для осуществления экспрессии гена существует генетический код - строго упорядоченная зависимость между основаниями нуклеотидов и аминокислотами (табл. 3). Общепринятые сокращения на

Основные свойства генетического кода
1. Триплетность – одной аминокислоте соответствуют три рядом расположенных нуклеотида, называемые триплетом (кодоном) (триплеты в и-РНК называются кодонами); 2. Универсаль

Уровни организации наследственного материала
Различают следующие уровни структурно-функциональной организации наследственного материала эукариот: генный, хромосомный и геномный. Элементарной структурой генного уровня органи

Цитологические и молекулярные основы изменчивости организмов
Генетика изучает не только явление наследственности, но и явление изменчивости. Изменчивость – это свойство живых организмов изменяться под действием факторов внешней и внут

Ненаследственная изменчивость
Ненаследственная (фенотипическая) изменчивость– это тип изменчивости, отражающий изменения фенотипа под действием условий внешней среды, не затрагивающих генотип. Степень ее вы

Наследственная изменчивость
Генотипическая (наследственная) изменчивость –это наследственные изменения признаков организма, определяемые генотипом и сохраняемые в ряду поколений. Она представлена двумя ви

Мутационная изменчивость
Мутация– это скачкообразное, устойчивое изменение генетического материала под влиянием факторов внешней или внутренней среды, передающееся по наследству. Организм, наследственн

Молекулярный механизм мутаций
Мутации, связанные с изменением структуры молекулы ДНК, называются генными. Они представляют собой выпадение или вставку одного, или нескольких азотистых оснований, либо то и другое одноврем

Характеристика мутаций на тканевом уровне
Соматические мутациипроисходят в соматических клетках, передаются по наследству только при вегетативном размножении и проявляются у самой особи (разный цвет глаз у одного челов

Мутация на уровне организма
По характеру изменения фенотипа все мутации можно разделить на следующие группы. 1. Морфологические, нарушающие признаки физического строения; безглазие, короткопал

Мутации на популяционном уровне
Считается, что любая мутация вредна, так как нарушает взаимодействие организма со средой. Однако некоторые мутации вызывают незначительные изменения в организме и не представляют особой опасности д

Действие хромосомных мутаций на различные системы организма
Степень изменения признаков организма при хромосомных мутациях зависит от величины дефектного участка и от содержания в нем важных для развития генов. Для определения последствий хромосомных мутаци

Последствия мутации в половых и соматических клетках
Результат действия мутации на фенотип человека может различаться в зависимости от типа клеток, в которых происходит изменение наследственных структур. Генеративные мутации или изменение насл

Устойчивость и репарация генетического материала
Устойчивость генетического материала обеспечивается: диплоидным набором хромосом; двойной спиралью ДНК; вырожденностью (избыточностью) генетического кода;

Антимутагены
Мутационный процесс является источником изменений, приводящих к различным патологическим состояниям. Компенсационный принцип на современном этапе предполагает мероприятия по предотвращению генетиче


1. Предмет, задачи и методы генетики. История развития и становления генетики как науки. 2. Этапы развития классической генетики. Современная (молекулярная) генетика. Основные понятия и по

Биологический синтез белка является очень сложным многоступенчатым процессом. В настоящее время доказано, что биосинтез белка происходит не в ядре, а в цитоплазме. Непосредственного участия в синтезе белка ДНК не принимает. Роль посредника, функцией которого является перевод наследственной информации о химическом составе и структуре белков, хранящийся в ДНК, в полипептидную цепь определенного белка выполняют рибонуклеиновые кислоты (и-РНК, т-РНК). Большое значение в биосинтезе белка имеет информационная РНК. Она выполняет роль матрицы. Количество образующихся на ДНК молекул и-РНК определяется числом генов, контролирующих у определенного организма синтез специфических белков. Каждый белок требует для синтеза свой и-РНК, одна молекула которой «списывает» последовательность нуклеотидов с участка ДНК, равному одному гену, а затем, и-РНК переносит эту информацию на последовательность расположения аминокислот в полипептидной цепи белка. Информационная РНК из ядра проникает в цитоплазму и действует на рибосомах по отношению к белкам, как матрица.

Биосинтез белка начинается с процесса под названием транскрипция (от английского transcription - переписывание, копия). На участке определенного гена молекулы ДНК синтезируется м-РНК. Синтез м-РНК осуществляется с помощью многих ферментов, но главная роль принадлежит РНК-полимеразе, которая прикрепляется к начальной точке молекулы ДНК инициации транскрипции под названием промотор, расплетает двойную спираль и синтезирует м-РНК. Промотор расположен перед геном и у эукариотов включает около 80, а у вирусов и бактерий около 10 нуклеотидов.

РНК-полимераза движется вдоль гена и ведет синтез и-РНК. Синтезированная молекула м-РНК отделяется от ДНК, а участки гена на которых образовалась эта кислота, вновь соединяются. Окончание синтеза м-РНК определяет участок, который получил название - терминатор. Нуклеотиды промотора и терминатора узнают специфические белки, которые регулируют активность РНК-полимеразы.

В настоящее время доказано, что сначала синтезируется предшественни м-РНК так называемая про-м-РНК. Эта кислота имеет большие размеры, чем м-РНК и содержит фрагменты не кодирующие синтез пептидной цепи определенного белка. Связано это с тем, что в ДНК наряду с участками кодирующими р-РНК, т-РНК и полипептиды имеются фрагменты не несущие генетической информации. Эти фрагменты получили название интронов, а кодирующие фрагменты названы экзонами. После образования про-и-РНК, происходит процесс созревания м-РНК, который получил название процессинга. В процессе созревания м-РНК интроны удаляются специальными ферментами, а информативные участки (экзоны) соединяются между собой в строгом порядке с помощью ферментов лигаз. Этот процесс называется сплайсингом (от английского splice - сращивать). Биологическое значение и роль интронов остаются не ясными. Однако, установлено, что при считывании в ДНК только экзонов, зрелая м-РНК не образуется.

Следующим этапом биосинтеза является трансляция, которая происходит в цитоплазме на рибосомах. Суть ее в том, что последовательность расположения нуклеопептидов в м-РНК переводится в строго упорядоченную последовательность расположения аминокислот в молекуле синтезируемого белка. Этот процесс протекает при активном участии т-РНК и состоит из активирования аминокислот и непосредственного синтеза белковой молекулы. Свободные аминокислоты активируются и присоединяются к т-РНК при помощи фермента аминоацил-т-РНК-синтеталы. Активированные аминокислоты т-РНК доставляются на рибосомы. Эти органоиды цитоплазмы состоят из двух субчастиц, одна из которых имеет константу седиментации 30 S, вторая 50 S. Молекула м-РНК выходит из ядра в цитоплазму и прикрепляется к малой субчастице рибосомы. Сигналом к трансляции служит стартовый кодон АУГ. Когда т-РНК доставляет к рибосоме активированную аминокислоту, ее антикодон соединяется с комплементарным кодоном м-РНК. Акцепторный конец т-РНК с соответствующей аминокислотой присоединяется к поверхности большой субъединицы рибосомы. Затем следующая т-РНК доставляет следующую аминокислоту и т. д. Молекула м-РНК работает на нескольких рибосомах, соединенных в полисомы. Начало синтеза полипептидной цепи называется элонгацией. Окончание синтеза полипептидной цепи называется терминацией. Терминация наступает когда на м-РНК появляется один из кодонов-терминаторов УАА, УАТ или УГА.

Смотрите также

Биогеохимия: история и современность
Введение Биогеохимия - наука, изучающая жизнедеятельность организмов в качестве ведущего фактора миграции и распределения масс химических элементов на Земле. Предметом изучения биогео...

Что такое жизнь с точки зрения физики
ВВЕДЕНИЕ К современному естествознанию относятся теоретические концепции, сформировавшиеся на протяжении ХХ века в рамках различных научных дисциплин. Важнейшей, естественной наукой...

Влияние биоритмов на организм человека
Введение биоритм медицинский работоспособность спортсмен О существовании биологических ритмов людям известно с древних времен. Уже в «Ветхом Завете» даны указания о правильном образе ж...

В чем заключается биологический синтез? Приведите примеры.

Биологический синтез - процесс образования биологических макромолекул, структура которых определяется последовательностью нуклеотидом в молекуле ДНК (синтез белка). Синтез небелковых биополимеров происходит так: вначале синтезируется белок -фермент, а с его помощью образуются молекулы углеводов, липидов, гормонов и витаминов.

Дайте определение ассимиляции.

Ассимиляция (анаболизм или пластический обмен) - совокупность реакций биологического синтеза, в ходе которых из простых веществ, поступающих в клетку извне, образуются вещества, подобные веществам клетки.

Что такое генетический код?

Генетический код - единая система записи наследственной информации в молекулах ДНЕ и РНК в виде последовательности нуклеотидов в них. Несет информацию о порядке аминокислот в полипептидной цепи.

Сформулируйте основные свойства генетического кода.

1. Специфичность. Один и тот же триплет всегда соответствует только одной аминокислоте.

2. Избыточность. Существует 64 возможные комбинации четырех азотистых оснований (по 3 в триплете), а кодируют они 20 аминокислот. В результате некоторые аминокислоты кодируются несколькими триплетами, что повышает надежность передачи наследственной информации.

З. Универсальность. Генетический код универсален для всех живых организмов. Например, он одинаков у кишечной палочки и человека.

4. Неперекрываемость. Триплеты, кодирующие аминокислоты, никогда не перекрываются, а считываются и передаются всегда целиком. Невозможно использование азотистого основания одного триплета в комбинации с азотистыми основаниями другого триплета.

Где синтезируются рибонуклеиновые кислоты?

Информация о структуре всех видов РНК заключена в последовательности нуклеотидов ДНК и реализуется в один этап путем комплементарного синтеза молекулы РНК на одной из цепей молекул ДНК, т. е. в результате транскрипции.

Где происходит синтез белка?

Непосредственнаясборка белковой молекулы происходит в цитоплазме, на рибосомах.

Расскажите, как осуществляется синтез белка.

Процесс синтеза белка реализуется в два этапа:

Первый этап – транскрипция - перевод информации из последовательности триплетов ДНК в последовательность триплетов РНК. Осуществляется путем комплементарного синтеза информационной РНК на одной из цепей молекулы ДНК.

Второй этап - трансляция - передача информации из последовательности триплетов информационной РНК в последовательность аминокислот полипептидной цепи. Осуществляется путем подборки антикодонов транспортной РНК к кодонам (триплетам) информационной РНК по принципу комплементарности. Если антикодон транспортной РНК комплементарен кодону информационной РНК, то между ними происходит соединение, и аминокислота включается в полипептидную цепь. Этот процесс идет в цитоплазме, на рибосомах, которые как бы нанизаны на один из концов информационной РНК и передвигаются по ней триплет за триплетом.

Что такое диссимиляция? Охарактеризуйте этапы диссимиляции.

Диссимиляция (катаболизм, энергетический обмен) - процесс, обратный реакциям ассимиляции. Сложные биополимеры распадаются, образуя простые вещества. При этом выделяется энергия, необходимая для реакций биосинтеза.

Выделяют три этапа энергетического обмена.

1. Подготовительный. На этом этапе молекулы полисахаридов, белков, жиров распадаются на более мелкие молекулы глюкозу, аминокислоты, жирные кислоты, глицерин. Вся выделяющаяся энергия рассеивается в виде тепла.

2. Бескислородный (анаэробное дыхание, или гликолиз). Этот этап неполного окисления также называют брожением. При анаэробном окислении 1 молекулы глюкозы образуется 2 молекулы АТФ. В АТФ запасается 40% выделяющейся энергии, остальное рассеивается в виде тепла.

3. Кислородное расщепление (аэробное дыхание). На этом этапе органические соединения окисляются до конечных продуктов СО2 и Н20. Кислородное расщепление сопровождается выделением большого количества энергии и запасанием 60% ее в 36 молекулах АТФ.

В чем заключается роль АТФ в обмене веществ в клетке?

Энергия, высвобождаемая ври окислении питательных веществ в клетке, запасается в фосфатных связях молекулы АТФ. АТФ обеспечивает энергией все клеточные функции - биосинтез, деление клетки, мышечное сокращение, перенос вещёств через мембрану, поддержание мембранного потенциала и проведение нервного импульса.

Молекула АТФ состоит из азотистого основании аденина, сахара рибозы и трех остатков фосфорной кислоты.

Расскажите об энергетическом о6мене в клетке на примере расщепления глюкозы.

1. Подготовительный этап. Распад гликогена или крахмала на молекулы глюкозы:

(C6H10O5)n + nH2O > C6H12O6

2. Анаэробное окисление. Из одной молекулы глюкозы образуется 2 молекулы пировиноградной кислоты, 2 молекулы АТФ и 2 молекулы воды. Молекулы пировиноградной кислоты впоследствии восстанавливаются в молочную кислоту:

C 6H 12O 6 + 2H 3PO 4 + 2АДФ > 2C 3H 6O 3 +2АТФ +2H 2O

3. Кислородное окисление. Образовавшиеся молекулы молочной кислоты и присутствии кислорода окисляются до углекислого газа и воды с образованием 36 молекул АТФ:

2СЗНб03 + 60236АДФ + 36НЗРО.1 -

Э 6С02 + 42Н20 +36АТФ.

Какие типы питания организмов вам известны?

По типу питания все организмы делятся па автотрофных и гетеротрофных.

Какие организмы называются автотрофными?

Автотрофы - организмы, живущие за счет неорганического источника углерода - углекислого газа, использующие для осуществления процессов синтеза энергию солнечного светя - фототрофы или энергию химических связей - хемотрофы.

Охарактеризуйте световую и темновую фазы фотосинтеза.

Фотосинтез - процесс образования органических соединений из неорганических за счет энергии солнечного света. Выделяют световую и темновую фазы фотосинтеза.

Световая фаза фотосинтеза. Происходит поглощение квантов смета хлорофиллами и фотолиз (разложение) воды. В результате образуются молекулы АТФ, атомарный водород Н", которые используются далее в темновой фазе для синтеза глюкозы, и молекулярный кислород (как побочный продукт), выделяемый в окружающую среду.

Темновая фаза фотосинтеза. Происходит образование глюкозы из углекислого газа, поглощаемого извне, водорода Н , полученного в ходе световой фазы, с затратой энергии АТФ, синтезированной также в световую фазу.

Почему в результате фотосинтеза у зеленых растений в атмосферу выделяется свободный кислород?

В ходе реакций световой фазы фотосинтеза под действием квантов светя и при взаимодействии с хлорофиллом происходит разложение (фотолиз) волы на атомарный водород и свободные радикалы Он". Последние взаимодействуют между собой, образуя свободный кислород и воду.

Так как кислород не включается в дальнейший каскад реакций фотосинтеза, он выделяется во внешнюю среду.

Что такое хемосинтез?

Хемосинтез - процесс синтеза органических соединений с использованием углерода из углекислого газа за счет энергии химических связей неорганических веществ.

Какие организмы называются гетеротрофными? Приведите примеры.

Гетеротрофы – организмы, использующие органический источник углерода. К ним относятся все животные, грибы, большинство растений.

(Теги: молекулы, синтеза, фотосинтеза, происходит, кислоты, процесс, синтез, организмы, энергии, кислород, углекислого, результате, последовательности, Кислородное, световую, аминокислоты, Какие, путем, осуществляется, триплетов, углерода, образуются, энергия, клетке, аминокислот, комплементарного, нуклеотидов, использующие, организмов, солнечного, темновую, реализуется, органических, связей, квантов, разложение, анаэробное, тепла, Приведите, цитоплазме, Расскажите, обмен, также, транспортной, фотолиз, световой, свободный, вещества, рассеивается, C6H12O6, окисляются, азотистого, последовательность, атомарный, всегда, энергию, триплет, комбинации, расщепление, образования, наследственной, полипептидной, неорганических, диссимиляция, распадаются, этапе, этапа, светя, триплета, между, запасается, включается, извне, пировиноградной, окислении, заключается, называются, водород, среду, питания, дыхание, клетки, окисление, соединений, образуется, химических, хемосинтез, Охарактеризуйте, растений, записи, Например, человека, поступающих, небелковых, Неперекрываемость, генетического, единая, углеводов, передачи, Несет)

Подробное решение страница стр.135 по биологии углубленный уровень для учащихся 10 класса, авторов Захаров В.Б., Мамонтов С.Г. Углубленный уровень 2015

  • Гдз рабочая тетрадь по Биологии за 10 класс можно найти

ВОПРОСЫ И ЗАДАНИЯ ДЛЯ ПОВТОРЕНИЯ

Вопрос 1. Что такое диссимиляция? Охарактеризуйте этапы этого процесса.

Совокупность реакции расщепления называют энергетическим обменом клетки или диссимиляцией. Диссимиляция прямо противоположна ассимиляции: в результате расщепления вещества утрачивают сходство с веществами клетки.

Энергетический обмен обычно делят на 3 этапа. Первый этап – подготовительный. На этом этапе молекулы ди- и полисахаридов, жиров, белков распадаются на мелкие молекулы – глюкозу, глицерин и жирные кислоты, аминокислоты, крупные молекулы нуклеиновых кислот – на азотистые основания – нуклеотиды. На этом этапе выделяется небольшое количество энергии, которая рассеивается в виде тепловой энергии.

Второй этап – бескислородный, или неполный. Он называется также анаэробным дыханием или брожением. Термин "брожение" обычно применяют по отношению к процессам, протекающим в клетке микроорганизмов или растений. Образующиеся на этом этапе вещества при участии ферментов вступают на путь дальнейшего расщепления. В мышцах, например, в результате анаэробного дыхания молекула глюкозы распадается на 2 молекулы молочной кислоты (гликолиз). В реакциях расщепления глюкозы участвуют фосфорная кислота и АДФ.

Третий этап энергетического обмена – стадия аэробного дыхания, или кислородного расщепления. Реакции этой стадии энергетического обмена также катализируются ферментами. При доступе О к клетке образовавшиеся во время предыдущего этапа вещества окисляются до конечных продуктов – Н2О и СО2. кислородное дыхание сопровождается выделением большого количества энергии и аккумуляцией ее в молекулах АТФ.

Вопрос 2. В чём заключается роль АТФ в обмене веществ в клетке?

Живые организмы могут использовать только химически связанную энергию. Каждое вещество обладает определенным запасом потенциальной энергии. Главными материальными носителями ее являются химические связи, разрыв или преобразование которых приводит к освобождению энергии. Энергетический уровень одних связей имеет величину 8-10 кДж - эти связи называются нормальными. В других связях заключена значительно большая энергия - 25-40 кДж - это так называемые макроэргические связи. Почти все известные соединения, обладающие такими связями, имеют в своем составе атомы фосфора или серы, по месту которых в молекуле и локализованы эти связи. Одним из соединений, играющих важнейшую роль в жизнедеятельности клетки, является аденозинтрифосфорная кислота (АТФ).

Аденозинтрифосфорная кислота (АТФ) состоит из органического основания аденина (I), углевода рибозы (II) и трех остатков фосфорной кислоты (III). Соединение аденина и рибозы называется аденозином. Пирофосфатные группы имеют макроэргические связи, обозначенные значком ~. Разложение одной молекулы АТФ с участием воды сопровождается отщеплением одной молекулы фосфорной кислоты и выделением свободной энергии, которая равна 33-42 кДж/моль. Все реакции с участием АТФ регулируются ферментными системами.

Вопрос 3. Расскажите об энергетическом обмене в клетке на примере расщепления глюкозы.

Вопрос 4. Какие типы питания организмов вам известны?

По типу питания все организмы делятся па автотрофных, гетеротрофных и миксотрофных.

Вопрос 5. Какие организмы называют автотрофными?

Автотрофы - организмы, живущие за счет неорганического источника углерода - углекислого газа, использующие для осуществления процессов синтеза энергию солнечного светя - фототрофы или энергию химических связей - хемотрофы.

Вопрос 6. Охарактеризуйте световую и темновую фазы фотосинтеза.

Фотосинтез - процесс образования органических соединений из неорганических в листьях зеленых растений на солнечном свету. Выделяют световую и темновую фазы фотосинтеза.

Входе световой фазы фотосинтеза происходит поглощение квантов смета хлорофиллами и фотолиз (разложение) воды. В результате образуются молекулы АТФ, атомарный водород Н", которые используются далее в темновой фазе для синтеза глюкозы, и молекулярный кислород (как побочный продукт), выделяемый в окружающую среду.

Темновая фаза фотосинтеза. Происходит образование глюкозы из углекислого газа, поглощаемого извне, водорода Н, полученного в ходе световой фазы, с затратой энергии АТФ, синтезированной также в световую фазу.

Вопрос 7. Почему в результате фотосинтеза у зелёных растений в атмосферу выделяется свободный кислород?

Кислород является побочным продуктом фотосинтеза. В ходе реакций световой фазы фотосинтеза под действием квантов светя и при взаимодействии с хлорофиллом происходит разложение (фотолиз) волы на атомарный водород и свободные радикалы Он-. Последние взаимодействуют между собой, образуя свободный кислород и воду.

Так как кислород не включается в дальнейший каскад реакций фотосинтеза, он выделяется во внешнюю среду.

Вопрос 8. Что такое хемосинтез?

Хемосинтезом называют процесс синтеза органических соединений с использованием углерода из углекислого газа за счет энергии химических связей неорганических веществ.

Вопрос 9. Какие организмы называют гетеротрофными? Приведите примеры.

Гетеротрофы - организмы, которые не способны синтезировать органические вещества из неорганических путём фотосинтеза или хемосинтеза. Для синтеза необходимых для своей жизнедеятельности органических веществ им требуются экзогенные органические вещества, то есть произведённые другими организмами. В процессе пищеварения пищеварительные ферменты расщепляют полимеры органических веществ на мономеры. Гетеротрофами являются почти все животные и грибы.

ВОПРОСЫ И ЗАДАНИЯ ДЛЯ ОБСУЖДЕНИЯ

Вопрос 1. Какие организмы называют автотрофными? На какие группы подразделяют автотрофов?

Автотрофные организмы, - это организмы, способные синтезировать органические соединения из неорганических (углекислого газа, воды и неорганических соединений азота и серы). В зависимости от источника потребляемой энергии автотрофы классифицируют на фотосинтезирующие и хемосинтезирующие организмы. Первые используют световую энергию, тогда как вторые - энергию экзотермических химических реакций (в ходе превращения неорганических соединении), т. е. энергию, образующуюся при окислении различных неорганических соединений (водорода, сероводорода, аммиака и др.).

Вопрос 2. Каков механизм образования свободного кислорода в результате фотосинтеза у зелёных растений? Раскройте биологическое и экологическое значение этого процесса.

В целом, химический баланс фотосинтеза может быть представлен в виде простого уравнения:

Водород, необходимый для восстановления диоксида углерода до глюкозы, берется из воды, а выделяющийся в ходе фотосинтеза кислород является побочным продуктом. Процесс нуждается в энергии света, так как вода сама по себе не способна восстанавливать диоксид углерода.

Фотосинтез – это процесс, от которого зависит вся жизнь на Земле. Он происходит только в растениях. В ходе фотосинтеза растение вырабатывает из неорганических веществ необходимые для всего живого органические вещества. Диоксид углерода, содержащийся в воздухе, проникает в лист через особые отверстия в эпидермисе листа, которые называют устьицами; вода и минеральные вещества поступают из почвы в корни и отсюда транспортируются к листьям по проводящей системе растения. Энергию, необходимую для синтеза органических веществ из неорганических, поставляет Солнце; эта энергия поглощается пигментами растений, главным образом хлорофиллом. В клетке синтез органических веществ протекает в хлоропластах, которые содержат хлорофилл. Свободный кислород, также образующийся в процессе фотосинтеза, выделяется в атмосферу.

Вопрос 3. Где, в результате каких преобразований молекул и в каком количестве образуется АТФ у живых организмов?

Синтез АТФ происходит в мембранах митохондрий в процессе дыхания, поэтому все ферменты и кофакторы дыхательной цепи, все ферменты окислительного фосфорилирования локализованы в данных органеллах.

ПРОБЛЕМНЫЕ ОБЛАСТИ

Вопрос 1. Как реализуется наследственная информация о признаках и свойствах ДНК- и РНК-содержащих вирусов?

В природе, носителем генетической информации являются нуклеиновые кислоты. Известно два основных типа нуклеиновых кислот: ДНК (дезоксирибонуклеиновая кислота) и РНК (рибонуклеиновая кислота). У большинства живых организмов нуклеиновые кислоты содержатся в ядре и цитоплазме (клеточном соке). Вирусы, хоть и являются неклеточными структурами, но также содержат нуклеиновые кислоты. По типу содержащейся нуклеиновой кислоты вирусы разделяют на два класса: ДНК-содержащие и РНК-содержащие. К ДНК-содержащим вирусам относятся вирусы гепатита В, герпес и др. РНК-содержащие микроорганизмы представлены гриппом и парагриппом, вирусом иммунодефицита человека (ВИЧ), гепатитом А и пр. У данных микроорганизмов, равно как и у прочих живых организмов, нуклеиновые кислоты играют роль носителя генетической информации. Информация о структуре различных белков (генетическая информация) закодирована в структуре нуклеиновых кислот в виде специфических последовательностей нуклеотидов (составных частей ДНК и РНК). Гены вирусных нуклеиновых кислот кодируют разнообразные ферменты и структурные белки. ДНК и РНК вирусов являются материальным субстратом наследственности и изменчивости этих микроорганизмов – двух основных составляющих в эволюции вирусов в частности и всей живой природы в целом.

Вопрос 2. В чём заключается биологический смысл избыточности генетического кода?

Избыточность кода является следствием его триплетности и означает то, что одна аминокислота может кодироваться несколькими трип­летами (поскольку аминокислот 20, а триплетов - 64). Исключение составляют метионин и триптофан, которые кодируются только одним триплетом. Кроме того, некоторые триплеты вы­полняют специфические функции. Так, в молекуле иРНК три из них УАА, УАГ, УГА - являются терминирующими кодонами, т. е. стоп-сигналами, прекращающими синтез полипептидной цепи. Триплет, соответствующий метионину (АУГ), стоящий в начале цепи ДНК, не кодирует аминокислоту, а выполняет функцию инициирования (возбуждения) считывания.

Избыточность кодирующих последовательностей – ценнейшее свойство когда, так как она повышает устойчивость информационного потока к неблагоприятным воздействиям внешней и внутренней среды. При определении природы аминокислоты, которая должна быть заключена в белок, третий нуклеотид в кодоне не имеет столь важного значения, как первые два. Для многих аминокислот замена нуклеотида третьей позиции кодона не сказывается на его смысле.

Вопрос 3. Каким образом реализуется наследственная информация о структуре и функциях небелковых молекул, синтезируемых в клетке?

Генетическая информация зашифрована в ДНК и РНК.

Вопрос 4. Как вы считаете, можно ли повысить эффективность фотосинтеза?

Соблюдение режима орошения,

ПРИКЛАДНЫЕ АСПЕКТЫ

Вопрос 1. Как вы думаете, каким образом можно повысить эффективность фотосинтеза у зелёных растений?

Основываясь на механизмах влияния внутренних и внешних факторов, действующих на показатели фотосинтетической активности растений, в практике сельского хозяйства используют ряд приемов, позволяющих увеличить интенсивность фотосинтеза и повысить урожайность сельскохозяйственных культур, к ним относят:

Соблюдение режима орошения,

Соблюдение режима минерального питания,

Использование необходимых внекорневых подкормок микроэлементами,

Повышение в защищенном грунте концентрации углекислого газа за счет применения органических удобрений (внесение навоза), использования сухого льда, поддымление парниковых рам. При этом у огурцов не только повышается интенсивность фотосинтеза, но и увеличивается количество женских цветков.

Вопрос 2. Какие примеры, характеризующие использование особенностей метаболизма организмов в медицине, сельском хозяйстве и других отраслях, вы можете привести?

Примером метаболизма в кондитерской промышленности может служить использование дрожжей.

ЗАДАНИЯ

Вопрос 1. Напишите реакции световой и темновой фаз фотосинтеза. Обозначьте пути переноса электронов и протонов.

Вопрос 3. Опишите процесс расщепления органических молекул при участии кислорода в клетках аэробов.

Дыхание – это окислительный, с участием кислорода распад органических питательных веществ, сопровождающийся образованием химически активных метаболитов и освобождением энергии, которые используются клетками для процессов жизнедеятельности.

В процессе дыхания образуется огромное количество энергии. Если вся она выделилась бы сразу, то клетка перестала бы существовать. Но этого не происходит, потому что энергия выделяется не вся сразу, а ступенчато, небольшими порциями. Выделение энергии небольшими дозами обусловлено тем, что дыхание представляет собой многоступенчатый процесс, на отдельных этапах которого образуются различные промежуточные продукты (с разной длиной углеродной цепочки) и выделяется энергия. Выделяющаяся энергия не расходуется в виде тепла, а запасается в универсальном макроэргическом соединении - АТФ. При расщеплении АТФ энергия может использоваться в любых процессах, необходимых для поддержания жизнедеятельности организма: на синтез различных органических веществ, механическую работу, поддержание осмотического давления протоплазмы и т. д.

Обмен веществ и превращение энергии - основа жизнедеятельности клетки. Энергетический обмен в клетке и его сущность. Значение АТФ в энергетическом обмене.

Пластический обмен. Фотосинтез. Пути повышения продуктивности сельскохозяйственных растений. Биосинтез белков. Ген и его роль в биосинтезе. Код ДНК. Реакция матричного синтеза. Взаимосвязь процессов пластического и энергетического обмена.

Вопросы для самопроверки:

    В чем заключается биологический синтез? Приведите примеры.

    Дайте определение ассимиляции.

    Что такое генетический код? Сформулируйте основное свойства генетического кода?

    Где синтезируются рибонуклеиновые кислоты?

    Где происходит синтез белка? Расскажите, как осуществляется синтез 6eлкa.

    Что такое диссимиляция? Охарактеризуйте этапы диссимиляции.

    В чем заключается роль АТФ в обмене веществ в клетке?

    Расскажите об энергетическом обмене в клетке на примере расщепления глюкозы.

    Какие типы питания организмов вам известны? Какие организмы называются автотрофными? На какие группы делятся автотрофные организмы?

    Охарактеризуйте световую и темновую фазы фотосинтеза.

    Почему в результате фотосинтеза у зеленых растений в атмосферу выделяется свободный кислород?

    Что такое хемосинтез?

    Приведите примеры фотосинтезирующих организмов.

    Какие организмы называются гетеротрофными? Приведите примеры.

Раздел 4. Размножение живых организмов

Способность к размножению, или самовоспроизводство, - одна из важнейших характеристик органической природы. Размножение – свойство, присущее всем без исключения живым организмам – от бактерий до млекопитающих. Существование любого вида животных и растений, бактерий и грибов, преемственность между родительскими особями и их потомством поддерживаются только благодаря размножению.

Необходимое условие размножения - наследственность, т.е. способность воспроизводить свойства и признаки родителей.

Известны различные формы размножения, но все они могут быть объединены в два типа: половое и бесполое.

Половым размножением называют смену поколений и развитие организмов на основе специализированных - половых клеток, образующихся в половых железах. В эволюции размножения наиболее прогрессивным оказался способ, благодаря которому новый организм развивается в результате слияния двух половых клеток, образованных разными родителями. Однако у беспозвоночных животных нередко сперматозоиды и яйцеклетки формируются в теле одного организма. Такое явление - обоеполость - называют гермафродитизмом. Цветковые растения также бывают обоеполыми. Известны случаи, когда новый организм, не обязательно появляется в результате слияния половых клеток. У некоторых видов животных и растений наблюдается развитие из неоплодотворенной яйцеклетки. Такое размножение называют девственным, или партеногенетическим.

Бесполое размножение характеризуется тем, что новая особь развивается из неполовых (соматических) клеток.

Вопросы для самопроверки:

    Какие способы размножения вам известны? Что такое половое размножение?

    У каких организмов встречается бесполое размножение? Какие формы бесполого размножения вам известны? Приведите примеры.

    Почему при бесполом размножении потомки генетически сходны между собой и с родительской особью?

    Чем половое размножение отличается от бесполого? Укажите отличия мейоза от митоза.

    В чем заключается биологический смысл мейоза? Почему зрелые половые клетки одного организма несут разные комбинации генов?

    В нем состоят эволюционные преимущества полового размножения перед бесполым?